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ABSMA

Stepwise multiple linear regression has proved to be an extremely

useful computational technique in data analysis problems. This
procedure has been implemented in numerous comput-r programs and over-
comes the acute problem that often exists with the classical

computational methods of multiple linear regression. This problem

manifests itself through the excessive computation time involved in

obtaining solutions to the 2N-I sets of normal equations that arise

when seeking an optimum linear combination of vriables from the subsets

* -of the N variables. The procedure takes advantage of recurrence

relations existing between covariances of residuals, regression

coefficients, and inverse elements of partitions of the covariance

matrix. The application of these recurrence formulas is equivalent to

the introduction or deletion of a va.riable into a linear approximating

function which is being sought as the solution to a data analysis

problem. This report contains derivations of the recurrence formulas,

shows how they are implemented in a computer program and includes an

improved algorithm which halves the storage requirements of previous

algorithms. A computer program for the BRLISC computer which incorpo-

rates this procedure is described by the author and others in a previous
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report, SL Report No. 1330, July 1966. The present repcrt is an

mplification of the statistical theory and computational procedures

presented in that report in addition to the exposition of the improved

algoritba.
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I. INTRODUCTION

The computational technique for stepwise multiple linear

regression described by M. A. Efroymson [5]* has proved to be

extremely useful in data analysis problems. This procedure, with

various modifications, has been implemented in numerous computer

programs in government laboratories, universities, and industry and

overcomes one of the major problems that often exists with the

classical* computational methods of multiple linear regression. In

problems where many variables are involved, one may have only

intuitive suspicion regarding those variables which may be significant.
I
j In these instances, one of the classical approaches is to obtain the

jleast-squares solution to the regression equation containing all theFvariables that are believed to be potentially significant and then

attempt to eliminate insignificant variables by tests of significance.

This procedure is of limited use when many variables are involved and

usually runs into extreme computational difficulty. An alternative

procedure is to examine the solutions of all the subset models that can

*Numbers in brackets denote references which may be found on psge 4(.

*The word "classical" here may be a misnomer in that the essential
substance of the computational procedure was proposed as early as
1934 by Horst [12] and 1938 by Cochran [4]. The recent interest in
the subject is of course due to the advent of modern high speed
Computing machinery.



be formed from the collection of variables that are of interest and

choose the one which seems to give the "best fit." This procedure,

however, can be very costly in terms of computation time. If one has

N independent variables and wishes to obtain all possible solutions to

models containing 1,2,... and N variables one has to solve 2N-1 sets of

linear equations. For candidate models containing five variables this

would require the solution of 31 sets of linear equations (a practical

ntaber) but for twenty variables this number Jumps to 1,048,5T5. A

means to circumvent this computational difficulty is provided by

stepwize multiple regression. This procedure takes advantage of the

fact that the Gauss-Jordan algorithm, whev used to solve the normal

equatins with N variables, yields intermediate solutions to N

regression problems containing 1,2,... and N variables. The power of

the procedure lies in the fact that the variables are introduced into

the regression in the order of their significance. At each stage the

variable which is entered into the regression is the one which will

yield the greatest reduction in the sum of squares of residuals. The

power of the procedure is further enhanced by removing terms from

regression at later stages that have become insignificant as a result

of the inclusion of additional variables in the regression. The

computations proceed until an equilibrium point is reached where no

significant reduction in the sum of squares of residuals is to be

gained by adding variables in the regression and where a significant

increase in the sum of squares of residuals would arise if a variable

were removed from regression. The procedure described above will be
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referred to as forward stepwise regression. A modification of the

method Is to begin with all variables in regression and then remove

insignificant variables, one by one. In a fashion similar to the

forward regression, a variable which is removed from regression can

subsequently reenter if it becomes significant at a later stage. This

procedure will be referred to as backwards stepwise regression.

The optimum or ideal sub-model chosen from a candidate model

can be defined as that model containing only variables which are

statistically significant at a chosen level of significance and which

has the minimum variance of residuals among the sub-models that have

all terms significant at that level.

In general, neither version of stepwise regression yields the

optimum model but in most cases the model obtained by either procedure

comes very close to being optimum and in many cases is identical to

that obtained by the costly method of enumerating all the solutions.

In those instances where one is interested in finding the

optimum model, as defined above, the Gauss-Jordan algorithm greatly

reduces the required computations. The optimum path of elimination

for generating all possible stepwise combinations can be controlled by

a "binary algorithm" described by Lotto [1i], 1961, and Garside [6],

1965. The procedure is optimized so that the computations go through

the fewest recursions. Despite this optimization, the computational

labor is such that the procedure seems limited to handling fewer than

twenty variables.
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The paper by Efroymson contains mostly a description of the

computational procedure. This report contains derivations of the

pertinent mathematical equations related to the procedure including

the recurrence formulas relating covariances of residuals, regression

coefficients, and elements of the inverse of partitions of the

covariance matrix. An improvement of the algorithm used by

Efroymson is derived. This improved algorithm reduces the storage

requirement by 50% thus allowing the analysis of larger models cr the

use of double precision arithmetic. This lazter consideration is

quite important when analysing models containing many variables. In

addition, a numerical example is presented showing the differing

results that can be obtained by the backward and forward versions of

the procedure.

A computer program for BRIESC (Ballistic Research Laboratories

Electronic Scientific Computer) which incorporates this procedure is

described by the author and others in a previous report, BRL Report

No. 1330, July 1966. The present report is an amplification of the

statistical theory and computational procedures presented in that

report in addition to the exposition of the improved algorithm.
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II. MTlIPLE LINEAR REGE3SION

The theory of multiple linear regression and correlation is

contained in the theory of "Linear Statistical Models" and can be

found in many widely used texts such as that by Graybill [T]. The

concept of a linear model is fundamental to the ensuing exposition and

hence the definition found in Graybill is listed. By a linear model

is meant "an equation that relates random variables, mathematical

variables, and parameters and that is linear in the parameters and in

the random variables." Linear models are classified into several

categories depending on the distribution of the variables, the presence

and nature of errors when observing the variables, and in the nature

of the variables themselves, i.e., whether the variables are

mathematical variables or random variables. The equation relating the

variables is written in +he form

X n = b 0 +b 1  .. + b n-1 Xn- (i)

The variables Xl, X2, ... Xn I are referred to as "independent

variables" and X as the dependent variable. In some instances onen

is interested in polynomial or curvilinear models and the variables

X1 , X2 , ... Xn. 1 are not necessarily independent in the probability

sense. For example the model

X1
X2 = b1 X1 + b 2 cos XI + b3 e (2)
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is curvilinear, i.e., linear in the parameters bl, b2 and b, even

though nonlinear in X1. This model fits into the framework of

Auation (1) when the transformations X2 = cos X1 and X3 = e are

introduced. This model is contrasted with the model

b
X2 = bI e X + b3 cosb X (3)

which is nonlinear in the parameters bl, b2 , b3 and b4 and cannot be

linearized by transformations. This problem is one of nonlinear

regression and is not discussed further in this report.

In multiple linear regression one is interested in obtaining

an estimate of the bi which will yield a "prediction equation"

represented by Equation (1) which best fits a set of observations.

The m setz of observations of Xn the dependent variable, and of

X1, X2, ... Xn.1 can be written as a matrix xii , i = 1, 2, ... m,

j = 1, 2, ... n. When the variables are measured about their

respective means, Equation (1) can be written

Xx =b (x~+b - +...
Xn n ,( 1 -11+2 (2 2)

+ bn1 (X. 1 - . (4)

The coefficient b0 in Equation (1) is obtained from the relationship

n-1

b X I bili (5)

i=l

Hereafter the variables will be assumed to be measured about their

respective means and the quantity Xi will be used to represent X - X

12
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For a par..eular observation Equation (4) takes the form

x jn =b Xjl + b2 Xj2 +..+bn.I Xj,n .I +ej. (6)

e is a residual and is the difference between the predicted value

and the observed value of X *. The least-squares method of estimating

the coefficients b is based on the minimization of the sum of the

2
rquares of th.. residuals, denoted as E

m
E2  1 e 2

J=1

m

I'= (Xjn - b 1 Xjl - b2 xj 2  .. - bn-1 Xj,n-i)
2  (T)

J=l

This minimization is achieved by taking partial derivatives of E2 with

respect to each of the bk and equating each of these (n-l) equations to

zero. This leads to the normal equations

I xjk (xjn - b1 x - b2 XJ 2  b xJn-1) = o* (8)J=lXlxJ ""' " -I X n') = O

k = 1, 2, ... n-i

The normall equations can be written in matrix form

X'X B = x'Y. (9)

X is the mx(n-l) matrix of observations of the independent variables,

X' its transpose, Y is the mxl matrix of observations of the dependent

•It should be noted that the variables Xi, i = 1, 2, ... n, are assumed

to be measured without t rror.

13
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variable and B is the column vector of (n-1) regression coefficients.

The solution of the normal equations to obtain the regression

coefficients is given as

!bl

b2
B = . = (X'X) X'Y, (i0)

bn -

where (X'X) "l is the inverse of the matrix XX. The normal equations

can be solved by any of several algorithms for the slution of systems

of linear equations, however, the Gauss-Jordan algorithm is used in

stepwise multiple regression for reasons that will become apparent.

1)4
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III. C0MRJTATION"'i CONSIDERATIONS IN lJIMIPE LI AR REGRESSION

The most severe computational problem occurring in multiple

linear regression is the formation and solution of the normal equations.

For any problem containing more than a few variables and observations

this problem can become too laborious for desk calculation and the use

of high speed computers is very desirable. As a consequence,

generalfzed library programs for doing multiple regression computations

are widely available and can be obtained in most computing facilities.

In general it is desirable for these programs to do more than compute

regression coefficients and variance of residuals, they should also

provide associated statistical data that could be used for significance

tests, computing prediction intervals, etc. These considerations are

discussed by Slater [63, 1961 and by Healy [1I), 1963. These

programs should be designed as efficiently as possible to keep the

computation time reasonably small. Since the Gauss-Jordan algorithm

provides the solution to (n-i) regression models en route to solving

the complete problem at essentially no significant increase in cost

compared to other algorithms, it seems wherever any library program for

multiple regression is prepared, the program should incorporate the

stepwise scheme. Such a program could then be used either to provide

only the complete solution or to select the significant variables for

inclusion in the output model.

15



The programming effort required to include the optional

capabilities for both forward stepwise regression and backward stepwise

regression is relatively small compared to the total programming

effort required to prepare either program. For this reason it seems

worthwhile that a well designed computer program should provide a

capability for both types of computations. The relative advantages

and disadvantages of the two procedur-s will be discussed in a later

section. The effort required to prepare the matrix elements to begin

the backward stepwise regression is identical to the effort required

to perform a complete forward regression. Because of this it seems

advisable that when the backward option is selected, the program should

be controlled in a manner which yields the results of a normal forward

regression as a by-product. When proceeding forward the various

solutions obtained may correspond to models of the form:

X =b +b X
n 0 11

Xn b + bI +X b (ll)
n=b +b.X1 b x3 X3X
b, + b' X + b'X3 + bI'XT

At each stage the program, at a minimum, should print the standard

deviation of residuals and identify the variables entered or removed.

This information can then prove to be invaluable if one chooses a

simpler model than the one finally selected by the stepwise regression

procedure.

16
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IV. MATHEMATICAL BASIS OF THE SEPWISE REGRESSION

The mathematical basis of the stepwise regression is that the

transformation rules of the Gauss-Jordan algorithm correspond to

recurrence relations that exist between covariances of residuals,

regression coefficients, and inverse elements of partitions of the

covariance matrix. These relations can readily be derived by taking

advantage of Yule's notation as described by Kendall [13). In this

notation the regression Equation (1) is written as follows:

Xn b nl.23...n-1 X1 + bn2.13...n-1 X2 + ..

+ bn,n-l.12...n-2 Xn-1  (12)

The first subscript of each b is that correq .-4iag to the dependent

variable, the second subscript correspondt ro tne ,-ariable attached to

the regression -oefficient. These two sub3cripts tre called the

primary subscripti. The remaining &ubscripts on the right of the

period are those of the remaining variables and are called secondary

subscripts. The entire collection of subscripts for those variables

that are in regression is thus represented by those subscripts to the

right of the period with the addition of the subscript to the

immediate left of the period. It should be noted that on a regression

coefficient neither of the primary subscripts can ever be included in

the secondary subscripts.

17



In a similar notation the residuals are denoted as

Xn.12...(n-l)" The subscript to the left of the period is that of the

dependent variable and those to the right are the subscripts of the

independent variables in the regression. Since regressions containing

fewer than the (n-1) independent variables will be of interest it is

necessary to introduce the following notation. The subscript q will

be used to represent the collection of subscripts 1 through (k-i) with

the exclusion of i and J, i.e.,

q = 1., 2,.. .0 (i-1)(i~l) ... (J-l(J+l) ... (k-1).

Any variable can be considered as the dependent variable, e.g.,

the residuals X. and X will be utilized in deriving the recurrence- J.q
relations. The covariance of the variables Xi and X is defined as

Si X i X i/f

where f is the degrees of freedom and the summation extends over the

im data points. For the present f will be defined as m and therefore

does not vary as the number of variables in rigression varies. The

covariance of residuals is defined as

5 i. - q x j.q/f

The secondary subscripts of a covariance indicate the variables in the

regression. When using this notation neither of the primary subscripts

*Hereafter, unless denoted otherwise, all summations extend over the
m data points.

18
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can be included in the secondary subscripts. The collection of

variables whose subscripts are contained in q, Is always assumed to be

in regression, however additional variables such as Xi and Xj (whoseini

subscripts are not contained in q) may also be in regression. For a

covariance the presence of this situation is denoted as follows:

5kk.qij ...~l(k-1)

Similar notation will be ased for the regression coefficients and for

elements of the inverse of partitions of the covariance matrix.

In the above notation, the normal equations (for the entire

collection of variables) can be written in the form

X X = 0, r = 1, 2, ... , n-l (13)

or equivalently

Slr bnl.23...(n-l) + S2r bn2.13...(n-l) + ...
bn b =s , 2, . (n-l). (1i4)

S(n-l)r n(n-l).12...(n-2) = Snr* ... . .

The complete covariance matrix is:

S11 s12 - ln

s21 s22 • 2n
S (15)

.. . . .. . . .S ... ...

s n n2 nn

-his matrix corresponds to the augmented matrix of coefficients usually

considered in solving a system of linear equations with the addition

19



II
of the nth row. The nth row is added so that the variance of

residuals, s nnq will be made available through the recurrence formulas,

thus avoiding the need for computing residuals at each stage.

Derivation of Recurrence Formulas

In deriving the recurrence formulas it is convenient to take

note of Kendall's [13) three observations:

(a) The covariance of any residual and any variable is zero

provided that the subscript of the variable occurs among the secondary

subscripts of the residual, i.e., Xi Xj.qi = 0.

(b) The covariance of any two residuals is zero provided that

the subscripts of either residual are contained in the secondary

subscripts of the other, i.e., I Xi. q XJ.qi = 0.

(c) The covariance of any two residuals is unaltered by

omitting any or all terms in either residual whose secondary

subscripts are contained in the secondary subscripts of the other

residual, i.e., I Xi.q XJ-qi = Xi.q (X - bji.q Xi).

Statement (a) is merely a statement of the normal equations. (b) and

(c) arise as a consequence of (a).

The actual value of a recurrence formula in computation is

dependent upon the availability of all the elements entering in the

recurrence except the one to be determined. With this in mind the

20



ensuing recurrences are derived and their relationship to the Gawus-

Jordan algorithm will be exhibited. Furthermore it will be shown that

the algorithm can be used without modification in a backwards

recursion, i.e., once a term is in regression it can be removed by the

same algorithm. Altogether 18 recurrence relations are of interest.

Nine of these correspond to the introduction of variables in regression

and the remaining nine correspond to the removal of variables from the

regressiun. It will be shown that these 18 reiLarrence formulas are

equivalent to the four rules of the Gauss-Jordan algorithm. The

elements of the derivations do not necessitate any particular sequencing

of the digits in q (the sequence has been assumed for simplicity) and

hold true for arbitrary 1, j and k. The presence of Xi, X, and Xk in

regression (or not) will be denoted by the notation introduced

previously.

Fom (c)

SXjqXj.qk = o Xk.q (X - bik.q Xk)"

Also Xk. X, =Xkq X,.q and IXk.q Xk, =Xk.q Xkq

Hence

I Xk.q Xj.q = bjk q IX q*

Dividing by f

bjk.q Skj.ql'kk.q = Sjk.qlskk.q- (6)

21



As shown later, it is useful to define a new quantity d ikqas

follows:

d ik.q b - ik.q = - kq/ (17)

I Again from (c)

x .i.qk xJ.qk Lx i.q xJ.qk

=' ~~Xj x bjcqX)

=Xi.q Xk~ -b

Xq J.q b k~ Xi.q X~

or equivalently

sij.qk ' ij.q -bjk.q sik.q*

Substituting for b jkqfrom Equation (16)

s ij.qk = ij.q - ik.q skj.q/Skk.q* 18

From (16) and (17)

-
5iJ.g 'kk.g 'ik.q 8 kA.cg

8ii.q 8kk.q sik.q ski.q

=b -j ,L + 5 tJ.q 'kk.g - sik.cj 5 kj.,
Ji-q sii.q s ii.q s kk.q - il.q S ki.q

22
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skj~ ii.11- 8ki.. 'ij.g

b ji.q - ii.q Sii.q Skk.q Sik.q Skk.q

or bji.qk =bjj.q "bki.q skj.qi/k.qi* (19)

Equivalently

ij.qk iJ.q (-bkj.q) Sik.qj/Sk.qj"

Hence

dij.qk =dij.q - Sik.qj dkj.q/Sk*qj* (20)

Elements of the Inverse Matrix

Consider the partition of the covariance matrix formed by

taking all the rows and columns of indices q, i, J, k. Denote the

determinant of this matrix as R and the cofactor of the element sij as

R ij. Since the covariance matrix is symmetrical, Ru = ji. rom. Craemer' s rule

b = - A
ij.qk i i

ii~q2. I~~q~ f=Xi.qjk Xi/f

= 8sii- bit.12... (i-1)(i+l) ...(t-1)(t+l)...k sit
t=qpJ,k

= sii + 1/Rii I sit Hit

t=q,J,k

t=q,i,j,k

- - -- ~



From the Laplace expansion theorem

1= sit Rit.

t=q,i,J,k

Hence

sii.qjk . (22)

From Equation (16)

1ij.qk  b bji.qk sii.qk

R - /R j) (Rj Ri-jj)"

R is the cofActor of the second order minor in R which is obtained

by striking out row h and column i and then row j and column k.

Sij.qk - RJ/i. 3  = - Rij/Rii.jj. (23)

The i,Jth element of the inverse of the partition of the

covariance matrix defined above is denoted as cij.qijk' The only

*inverse elements which will be of interest are those elements which are

inverse elements of partitions defined by taking the rows and columns

* subscripted by the subscripts of the variables in regression. Hence

the primary subscripts of the inverse elements will always be included

in the secondary subscripts. As in the case of covariances, the

secondary subscripts will denote the variables in regression. From

fundamentals of matrix algebra

*This notation is taken from Gutman £8).
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c ikIij = fiRq/k~i*(5

and Ck~~k.qijk = ci='/(/'

= 1kqj (2T)

Fro Eqato (25)

c jqj ikj.ik kiq kqj

kjjqik SCJ*qJ =- bkk.qi/Sj.qi j~

From Equationi (25) b,

ijqik ijb bkiq Sk~q /-bkq



The formulas derived to this point are those for forward

recursion, or for the edition of variables into the regression.

Similar formulas are now derived for backward recursion.

From Equation (25)
b -=-c -- C / (29)

bki.qj Cik.qijk kk.qij ik.qijk/ckk.qijk

Similarly

dkj.qi = Ckj.qijk/Ckk.qijk* (30)

From Equation (28)

Cij.qij = cij.qiJk + bki.qj d.qi/Skk.qiJ"

Substituting for

bki.qj ' Ckk.qijk siJ.qij

dkj.qi = Cjk.qiJk/Ckk.qiJk2

cij.qij = cij.qijk - C'ik.qijk Ck.qijk/Ckk.qijk" (31)

From Equation (18)

s J.q = 8ij.qk + Sik.q Skj.q/Skk.q

= siJ.qk + bik.q Skk.q bjk.q Skk.q/Skk.q

or sij.q s iJ.qk - dik.q bjk.q/Ckk.qk" (32)

From Equation (27)

--.qij " /ck.qij k -  (33)

26



From Equation (19)

bji.q b ji.qk + bki.q 8kJ.qi/Skk.qi

= ji'qk " Oik'qik Skkoqi bJk'qi/Ckk'qik Skk'qi io-c ka i/ b qi a

bJi.q b ji.,,k - Pik.qik Jk.qikk.qik()

Similarly

- bij.q =.b jqk - Cjk.qjk(-bik.qj)/Ckk.qjk

or dij-q = dijqk " dik.qJ Cjk.qjk/Clk.qjk" (35)

From Equation (16)

SkJ.q = b jk.q Skk.q = bjk.q/Ckk.q k -

Similarly
ss= b cl=-

Sik.q = bik.q/ekk.qk dik.q/Ckk.qk" (T)

The eighteen recurrence formulas are listed in a convenient order on
the following page. The successive application of these formulas to

appropriate matrix elements is the basis of stepwise multiple linear
regression. The matrix elements are continually replaced at each
stage by the matrix elements of the new stage. The initial matrix is

the covariance matrix, equation (15). Each stage is characterized by

the presence of a particular set of independent variables in the
regression. In practice the variables will not enter the regression

in sequence, but in an order determined by their ability to reduce the
variance of residuals. For the present we can assume that as the

27



List of Recurrence Formulas

1.Cij.qijk cij.qij 'ki.qj dkj.qj/skk.qj

-2 c

3* b jk~ bki -b l' k~q jqikk

3 . b j i~ qk bji .q - ki.q k q i s k ,

6.b k.q a ~kj.q'/kk.q

7* dij.qk = dijq - dkj.q 5 ik.qj/skk.qj

8. dik~*q - 5ik.q/skk.q

9. 5 ij.qk 8 8ij.q - 'ik.q 5kj~q/S kk*q

10. C ijjqj C ij.qijk - c k.qijk cjkqijk/Ckk~ijk

11' b ki-qJ -Ck~jck,

1.bji.q bji.qk - ik.qi bjk.qi/ckk.qik

13. dkJ-qi = ckj.qijk/Ckk.qjk

14* skkj~qij 1/ckk.qjjk

15. skjoq b bjkq/Ck

16. d 3 i.q d djjq - djik*qj cjk.qjk/ckk.qjk

17. s ik~q d - iqck,

18. a jj.q s im.qk ~dik.q b jk.q/Ckk.qk
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variables enter the regression they are reordered. The end effect

(after the reordering) is that the variables are introduced into the

regression in the order X1, X2, ... Xk, hence, the k'th stage is

characterized by the presence of X1, X2, ... Xk in regression.

Theorem on Stepwise Multiple Linear Regression

Consider the sequence of matrices A0, A1, ... A. 1 . A0 is the

covariance matrix, Equation (15). Ak(k = 1, 2, ... n-i) is the matrix

formed by applying the transformation

k k-1 k-1 k-1 k-1

aik =aij " aik a~i ak, i = 1, 2, .. , (k-1)(k+l) .. , n

k k-l/ k-1

a kj a kj a s kk j = ., 2, ..., (k-l)(k+l) ..., n

k 1 /. 1  i j = k
akk l/k

k

to the matrix Ak. aik is the i, jth element of the matrix A

Denote this transformation as Tk . The results of applying this

transformation are contained in the following theorem:

THECEM:

The matrix Ak contains four partitions, the respective

partitions having elements as follows:

"ij = Cij.12...k' i = 1, 2j ... k2 J = l, 2, ... k

aij = bji.12... i-l,i+l...k' i = l, 2, ... k, j = k+l, k+2 ... n (39)
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~~~aij . i l i l . k i = k+l , k+2 , . .n, = 1 , 2 , . .k

a =i .. i = k+l, k+2, ... n, J = k+l, k+2, ... n

The proo.f is by induction. Assume that the theorem holds for

A,_,. then show that it necessarily must hold for A. and furthermore

that it holds for k = 1. The matrix Ak- can be partitioned as follows:

- -- Ak-1,

c ... c bkl b ... b
3.1 12 1,k-1 k k+l,l

C21 C2 ... C~jk- bk2 bk+1,2  ... b2
n2

. . . . . . . . . . . .
b

Ck-ll ck-l.2 . Ck-lk-l bk~k-I bk+l.k-i bnk 1

dkl dk2  ... 5,k-I Skk Sk,k+l "' Skn

dk+l,l dk+1,2 " dk+l,k-1 Sk+l,k Sk+l,k+l Sk+l,n

nl n2 n,k- 1  nk n,k+l " nn

The secondary subscripts of the matrix have been omitted in

Ak. 1 for brevity. The variables having subscripts 1, 2, ... k-i are

assumed to be in regression (due to the assumption that the theorem

ho'.ds for Akl) and hence the appropriate secondary subscripts should

be assumed to be attached to the various elements.

30
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By inspection of the transformation Tk in relation to the

elements stored in the nine partitions on which the transformation

acts, it is seen that the application of Tk is identical to the

application of the nine recurrence formulas 1 through 9. Furthermor,

the application of the nine recurrence formulas to Ak. is equivalent

to replacing Ak- 1 with Ak . The same holds true for k = 1 and hence the

proof is comple+-.

In a similar fashion it can be shown that as a consequence of

the nine recurrence formulas for backwards recursion, i.e., 10 through

18, the application of Tk to Ak generates the matrix Ak_.

The consequence of the above theorem can be generalized as

fellows: The collection of variables whose subscripts are represented

by the values taken by k in the successivL application of Tk are said

to be in regression if k appears an odd number of times in the

collection. Alternatively, a variable is said not to be in regression

if its subscript does not appear in the collection, or if it appears

an even number of times. The content of the matrix at any stage is as

follows:

a = sij'- when neitherXi nor X are in regression.

aij = bji.- when X is in regression but not X .

Saij = d j- when X is in regression but not Xi

aij = c ij.- when both Xi and X3 are in regression.
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The secondary subscripts are those appropriate to the particular

variables in ihe regression at that stage. A bookkeeping method for

determining which variables are in regression w ll be described in

Section VI.

The Correlation Matrix

For computational reasons it is desirable to transform the

initial matrix A0 (the covariance matrix) by dividing each element

aij by s s where s= The resulting matrix is a matrix of

simple correlation coefficients rij , i, j = 1, 2, ... n where

riij :_ '4/s i s J,

The diagonal elements of A are then unity and the remaining elements

are of a more uniform order of magnitude. The recurrence formulas

remain valid as shown below:

Consider the regression equation

X /s = B (X/sl) +B(X2s ) + "'" + R(Xk/sk)"

By inspection it is seen that the covariance matrix for this system is

equal to the correlation matrix defined above. The coefficients Bi are

those that arise when A. is the correlation matrix. Hence the

coefficient bni.q is computed from the formulr,

bni.q B Bniq "n /SV
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If S. is a covariance arising from the transformed system, Stj.qcan be recovered by the formula

sjJ.q = sis j S-q"

In Particular, the variance of residuals is given by

S S S~q
. nn.q -Sn nn.

If Cj-qij is an inverse element of the transformed system then
~~c 

j ql = CiJ~ i sj
iijqij

33
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V. SEIECTING THE E VARIABLE

In forward stelpise regression the variable which is entered

into regression is the one which yields the greatest reduction in the

variance of residuals at that stage. For an arbitrary variable Xi

that is not in regression it is seen from the recurrence formula 9

that the variance reduction is given by the quantity

Vi = ain ani/aii = Sin.q Sni.q/Sii.q. (41)

For an arbitrary variable Xi that is in regression the variance

increase resulting from the removal of Xi from regression is given by

18.

- v, ain ani/aii d dni.q b ni.q/cii.qi. (42)

For Xi not in regression V is positive and for Xi in

regression V is negative.
i

After determiniag the key element it is necessary to test

whether the variance reduction due to entering the key variable is

statistically significant. By inspection of 9 it is seen that for

i =J=n

S =qk Snn.q (1 - S nk.q Skn.q/Snn.q Skk.q ) .  (43)
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The quantity (s r kk.i is defined as the productThe quantityn (Snk~q

moment coefficient of correlation between X.. and Xk.q . This

quantity is denoted as r &.q and is often referred to as a partial

correlation coefficient. Equation (43) can be written in the form

rnk.q s nk.q Skn.q/Snn.q Skk.q = (6nn.q - Snn.qk)/Snn.q. (4)

2
By inspection rnkq gives the fractional variance reduction obtained by

adding Xk into the regression. If rnk q is statistically different

from zero, then we observe that the fractional variance reduction due

to Xk is significant and that Xk should be brought into regression.

For forw&rd recursion r can be computed directly from the first

Zexpression of (44). For backwards recursion, i.e., to test whether a

2variable can be removed from regression, rn 2q can be computed from

the formula

rnkq = Vk/(Rn.qk + Vk) (45)

A test of significance for rnk.q is listed by Graybill [7]. If the

true coefficient . for which r .q is an estimate, is zero the

quantity

rt .q (f-2)1/2/(1 _ 2 )1/2 (46)t k~ = nk .q"

is distributed as the Student t distribution. A test of the hypothesis

rnk.q # 0 against the alternative rnk.q = 0 is performed as follows:

The quantity t is compared against the one-tailed t statistic, t(f-2,c)

appropriate to the degrees of freedom, f, and the confidence level, c.
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The hypothesis is accepted if t > t(f-2,c).

The test is used in two ways:

(A) At the beginning of a stage Vi is computed for all

subscripts, i = 1, 2, ... n-l. The largest positive V identifies the
i

key variable which should be tested for entering into the regression.

The quantity rnk .q is computed using Equation (44) and the t test

described above is performed. If t > t(f-2,c) the variable Xk is

entered into regression by performing the transformation Tk.

(B) The second part of the stage begins by again computing Vi

for all i. The negative V identify the variables that are not in

regression. The negative Vi of smallest magnitude identifies the key

variable to test for removal. rnk.q is computed using Equation (45).

if t > t(f-2,c) the correlation is signifitcant and the variable Xk

sbould remain in regression. If t < t(f-2,c) the variable can be

removed from regression without significantly increasing the variance

of residuals. Xk is removed from the regression by applying Tk. The

procedure is repeated until all insignificant variables have been

removed.

The modification of (A) and (B) above for backward regression

is quite simple. Initially the recursion is controlled to proceed all

the way forward, yielding the inverse of the covariance matrix. On the

way back, after any variable is removed, the determination is made as

to whether a variable removed previously has become significant, if so

it is reentered. If not, then the least significant variable in
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regression is removed, provided again that the resulting variance

increase is not significant. As in the forward version, the procedure

continues until the equilibrium point is reached.
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VI. IMROVEMENT OF THE AItrITh

2

The algorithm described by Efroymson requires n words of

storage for the covariance matrix and the successive matrices that are

generated as the regression proceeds. For problems requiring only a

few variables in the candidate model, this storage requirement creates

no difficulty on modern computing machinery. The author has been

involved in problems (see for example BRL Report No. 1348, [2)) where

it was necessary to examine candidate models containing 96 variables.

Fortunately the machine used on this problem, the Ballistic Research

Laboratories BRLESC has over 30,000 words of built-in double precision

storage, i.e., the standard word length in this computer is 68 binary

bits or approximately 20 decimal digits. Most commercial machines have

word lengths of only 8 or 10 decimal digits. The experience of various

compputing facilities on large scale matrix problems done on commercial

machines is that double precision computations are required to avoid

the computational problem associated with roundoff. The details of

this roundoff phenomena associated with polynomial models is discussed

by Ralston [15], page 233.

The necessity of doing a stepwise multiple regression program

in double precision reduces the available storage by a factor of two

and accordingly limits the size of the model which can be analyzed by
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a factor of the square root of two. The modified algorithm derived

below has been implemented in the BRIESC program described in [3) and

requires only (n2 + 7n - 2)/2 words of storage. In addition the

computations related to the application of the recursion formulas is

halved thus requiring less computer time.

In problems involving symmetric matrices it is common to take

advantage of the symmetry to reduce computations and storage. This is

especially true of least-squares computations since the covariance

matrix is symmetric. The matrices involved in stepwise multiple

regression are not symmetric, but might be termed pseudo symmetric,

i.e., laijd = lajil, the elements are symmetric in absolute value.

Except for signs, all the statistical information stored in the matrix

Ak is contained in the upper triangular part of the matrix and the

diagonal. The justification for storing the lower triangular matrix

(and subsequently operating on it) seemingly is that the signs contained

in the lower triangular matrix are used to indicate which variables

are in regression and which are not. To keep track of which variables

are in regression one can store a sequence of numbers z , z2 , ... Zn.

The presence of a variable X in regression is denoted by the presence

of - in zi . Initially zz 2, .. n are all + 1 to denote no

variables in regression. As a variable X is entered into regression

or removed zi is multiplied by - 1. If zi is operazed on an even

number of times this means that X was removed from regression as often

as it was entered and hence is not in. This would be so indicated by

z since zi would be equal to (-I)2r m + 1. Alternatively if z is
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operated on an odd number of times zj Is equal to (-l)2r+l  - 1.

This indicates Xi is in regression.

I.9 One additional problem remains. The transformation of

elements in the upper triangular matrix using Tk involves elements

which by storage implications are in the lower triangular matrix. Since

it is desired to modify the algorithm so that the lower triangular

matrix will not be stored, som method is needed to determine the signs

of the elements below the diagonal. The elements c = cji and

5 =si i. If a is a regression coefficient aij =bj = -dij.

Hence we note that aij : - a,, if either X or Xj are in regression,

but aij = aji if both are in regression or if neither are in regression.

By inspection of Tk it is seen that the only elements involved in

transforming aij are aij itself and other elements which lie either in

row k or column k. This leads one to look for a way of "filling in"

row k and column k below the diagonal with proper signs at the beginning

of the stage. This is most conveniently done by storing the row and

column in separate storage as elements t ij If aij is on or above the

diagonal then t1 j = al. Hence two rules are immediately apparent.

= a J = k, k+l, ... n Upper triangle row k

t = ai i = 1, 2, ... k-1 Upper triangle column k

By inspection it is seen that t is obtained in magnitude by a and
ij i

in sign by zi z J. This leads to the additional two rules
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tkj ZkZj aJk J = 1, 2, ... k-i, Lower triangle row k

tik i zzk aki = k+l, k+2, ... n. Lower triangle column k

Equations (38) are then used to generate the new upper triangular

matrix. The complete algorithm is as follows:

tkj = akj J=k, k+l, ... n

tk = aik i= l, 2, ... k-l

tkj = Zkj ajk j = 1, 2, ... k-i

tik iZk aki i= k+l, k+2, ... n

a'j =ai j -t t kj/tk i 1, 2, ... k-1, k+l, ... n

-=, 4 r, ... k-1, k+l, n

aiJ = tkj/t k  J = k+l, k+2, ... n

aik = - tik/tkk i = 1, 2, ... k-i

ak =l/tkk i j = k

Zk Z k

The primes denote the elements of the new matrix.

41
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VII. A COMPARISON OF FORWARD AND BACKWARD STENISE REGRESSION

Hamaker [iO, 1962, compared forward and backward stepwise

regression on data taken from Hald [9]. This data concerned the heat

evolved during the hardening of cement. The problem involved four

independent variables XI, X2 , X3 and X4 . The optimum model in this

problem contains the variables XI and X2. In Hamaker's version of

"forward selection" the variables were entered into the regression in

the order X4, Xl, X2 , X3 and in his "backward elimination" the

variables are eliminated in the order X3 , X4, Xl, X2. He concludes

that if a model containing two variables were selected the forward

version would yield the model containing X4 and XI while the backward

version would yield the optimum model containing the variables X and
i1

X2 . Hamaker made no provision for removing variables as they became

insignificant and in fact, a forward procedure which does provide this

capability would in this example have arrived at the optimum model.

The author analysed Hald's data using the computer program described

in [3] and obtained the results listed on the next page.
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STAGE ACTION TAKEN VARIABLES IN STD. DEV. OF
REGRESSION AT RESIDUALS
END OF STAGE

0 - - 15.o4

S AddX 4  X4  8.96

2 AddAX, O , 2.T3

3 Add X2  X4, , X2  2.31

4 Remove X1, X2  2.1

The decision to add or remove variabl-s were made at the 95% level

of signifieanc-. it is quite possible that at other levels of

significance different results might be obtained and in fact in

Section IX. an example is listed showing that even for a "perfect fit"

model the forward version does not obtain the optimum model whereas the

backward version does.

Abt* et al [1] discuss the forward and backward versions and

attribute the occurrence of different results to the presence of

"compounds". They define a coupound as

a set of N : N iL-epedzent variables plus the dependent
variable when the error variance associated with all N
independent variables is smaller, by orders of magnitude,
than the error variance associated with an subset of
N-1 independent variables.

Their discuision, however, seems to be based on a stepwise procedure

which does not allow for the removal of terms in the forward version,

Also discussed in a paper titled "On the Identification of the
Significant Independent Variables in Linear idal.s" by Klaus Abt,
soon to be published in Metrika. Dr. Abt 1wovided the author a
preprint of this pape',
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nor for the subsequent addition of variables that have been elimirnated

in t4 backward version. The end result of a regression run on Abt

et al's program as in Hamaker's example is an ordering of the variables

in either a forward or tickward ranking. The ranking in the end has

really no meaning in regards to the relative importance of the

variables' contributions to the variance reduction. The author, for

example, has observed the following phenomenon: In six stages of a

forward run, five stages consisted of removing variables that had

entered earlier. In this problem, variables that in the end were

insignificant would have been highly ranked had they not been tested for

removal.

The objective in multiple linear regression analysis is the

obtaining of a "prediction model" as near optimum as is practical, and

the ordering as discussed above is of interest only in relation to the

information it provides in achieving thls end. In this context a

provision for removing terms in the forward version seems to be more

effective toward achieving this goal than a forward procedure which

merely orders the variables in the sequence which produces the

greatest reduction in the sum of squares of residuals. Similarly. the

backward version should seemingly include a provision for reentering

variables if they subsequently become significant after their remaial.

The cost of running regression problems on todays modern

zu.chinery is so small that it seems for many problems one might

fruitfully apply both versions for comparison. When may obserfations

444



I, I

are involved in relation to the number of variables the formation of

the covariance matrix seems to comprise the bulk of the computation

time. On a problem involving 96 variables and 1I4,9 observations the

t RBRES C program [33 ran 5.34 minutes in the forward version, entering

21 variables before reaching equilibrium. When the program was

moified to take advantage of the modified algorithm derived earlier

this same problem ran in h.90 minutes. From these figures it is

Iestimated that the formation of the covariance matrix required about

4.5 minutes and that a complete forward regression would take

approximately 2.0 minutes with a similar estimate for the time required

to do a backward regression. Most problems are of a much smaller scale

and running time considerations are usually unimportant.
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Numerical Example*

The following example illustrates the point made earlier, that

even for a "perfect fit" model the forward version of stepwise

regression might not identify the optimum model. The linear model

from which the data was generated is of the form

X4 = 4X1 X2 + -X3.  (49)

The matrix of observations is:

x1 x2  x4

'1 0 0 14I o o

o 2 -l -5

-i 3 2 -1

10 1 9
2 0 8 32

71 =6/5 XE2 -3 j; -2 14 -39/5

Rather than the covariaace matrix, S, we begin with the mtrix fS,

denoted Ao.

*This example was discavcred by Mr. L. W. Caznbei of tIe Ballistic

Research Lthoratories,. Aberdeen Proving Ground;r.
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370 475 150 14551175 1700 -400 -1000
Ao  1/25j 150 -400 1250 4750

1455 -1000 4750 21070

At the first stage the test quantities for the reduction in the sum

of squares of residuals is given by

V, = 4 a,/a,_ = 1/25 (1455)2/370 28.9,

V2 = a2 a4 a2 = 1/25 (1000)22173- 23.5,

V3 = a-1 a43/a3  = 1/25 (4750)2/1250 = 722.0.

Sinc-e V is the largest of the three test quantities, 3 becomes the

key variable. To test whether this variable will significantly reduce

the sum of squares of residuals we obtain the coefficient r43 .

2r&5= 3 a341
1a33 a = (4750) /(125o)(21o7o) = .857

r (f-'2)' t
t .,. 

2

1 - r43

.857 3) =4.24

(f-.,:95) = t(3,.95) = 2.35

Siice t > t(f-2,.95) the test for -ding the variable indicates that

X, (-.t the 95% level of confidence) shuld be brought into the

rereeslon. After operating on A with the Gauss-Jordan algorithm with

Sa 3 3 av the Rivot wt obtain
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352 523 -3 885
523 1572 8 520

A1  .1/I 5(3 -8 1/2 95

885 520 -95 3020

The test quantities are

V1 = 1/25(885) /342 91.7,

V2 = 1/25(520)/1572 = 68.7.

The key variable by inspection is XI.

I2 r4. 3 = (885)/(342)(3o20) = .758

1,.§ (2) 1/2
t=.5 = 2.10

t(f-2,.95) = t(2,.95) 2.92

Since t < t(f-2,.95) the test for addition fails and the variable X,

is not entered into regression. 'This then is the equilibrium point

and the model which a forward stepwise procedure would yield is

X 4 [4 = b3 x 3 E3 ),

b3 a43 = 95/25 .3,

bo ,o  - bX, = 39/5 - (2)95/25= .2,

X4 .2 + .38 y-3

Note that in this example no tests for removal were necessary.
I

It is not necessary to do the complete computations to exhibit

the result for the backward version. One of the three variables,

51



[rf

(assume X2 ) will be the key variable to test for removal. The

partial correlation coefficient is computed from Equation (45).

2
2r.13= 2v'2('44.125 V2

It Since s4.123 = 0, the coefficient is 1.0 indicating perfect

correlation. This wouli be true for any of the three variables.

Obviously, no variable is removed and the equilibrium point is

established with all three variables in regression.

Recent Work in Europe

After the completion of this manuscript the author attended a

seminar titled, "A New Computer Approach in Determining Optimum

Regression in Multivariate Analysis." The lecturer was Dr. M. G.

Kendall, the noted British statistician. The new approach referred to

in the seminar title was a modification of the technique described by

Lotto and Garside in enumerating the 2N-1 regressions. Kendall and

I his coworkers have developed an algorithm which is more economical than

the recursive generation of the 2N-1 regressions by noting that it is

possible to identify (without performing the computations) certain

useless combinations which are demonstrably worse than combinations for

which regressions have already been obtained. The details of this

algorithm can be found in the paper "The Discarding of Variables in

Multivariate Analysis" by E. M. L. Beale, M. G. Kendall and D. W. Mann,

copies of which were distributed at the seminar*. This technique has

*This seminar was ? !ld on April 11, 1967 and sponsored by C-E-I-R Inc.,

5272 River Road, Washington, D.C.
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been called "partial enumeration" and its attractiveness in comarison

to forward and backward stepwise regression was notei. It was pointed

out, as was done earlier in this thesis, that stepwise regression does

not in general lead to the optimum model. In this connection,

reference was made to a paper by Oosterhoff* (1963) which contains an

example for which the forward and backward methods lead. to the same

model, neither of which is optimum.

*Oosterhoff, J. (1963), On the Selection of Independent Variables in a
Regression Equation, Report S 319 (VP23) Mathematisch Centrum,
Amsterdam.
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,-.tepwise multiple linear regression has proved to be an extremely useful
computational technique in data analysis prc')lems. This procedure has been
implemented in numerous computer programs and overcomes the acute problem that
often exists with the classical computational methods of multiple linear
regression. This problem manifests itself through the excessive computation time
involved in obtaining solutions to the 2N-1 sets of normal equations that arise
when seeking an optimum linear cL' abination of variables from the subsets of the N
variables. The procedure takes advantage of recurrence relations existing
between covariances of residuals, regression coefficients, and inverse elements of
partitions of zhe covariance matrix. The application of these recurrence formulas
is equivalent to the introduction or deletion of a variable into a linear
approximating function which is being sought as the solution to a data analysis
problem. This report con, ains derivations of the recurrenue form~ulas, shows how
they are implemented in a computer program and includes an improved algorithm
iwgich halves the storage requirements of previous algorithms. A computer program
for the BRI.ESC computer which incorporates this procedure is described by the
author and others in a previous report, BRL Report No. 1530, Ju.ly 1966. The
present report is an amplification of the BTatistical theory and1 computational
procedures presented in that report in addition to the exposition of the improved
algorithm.
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